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Tibial eminence fracture, a bony avulsion of the anterior cruciate ligament (ACL) from
its insertion on the intercondylar eminence,1 was first described by Poncet in 1875.2

Also known as tibial spine fractures, these injuries occur most commonly in skeletally
immature patients between the ages of 8 and 14 years.3 They account for 2% to 5%
of knee injuries in the pediatric population4,5 and 14% of ACL injuries,6 and have an
incidence of 3 per 100,000 children per year.7 Although tibial eminence fractures are
relatively rare, pediatric knee injuries, in general, are increasing in frequency second-
ary to increased competitive sports participation,8,9 and present a public health
problem because of the detrimental effects they can have on the health and
well-being of young athletes.10 Given these concerns, appropriate treatment of tibial
minence fractures is paramount to the restoration of knee function, return-to-sports
articipation, and overall quality of life.

ANATOMY

The tibial intercondylar eminence is an elevated region of bone between the medial
and lateral tibial condyles. It is anatomically divided into 4 distinct regions—a medial
and lateral intercondylar spine and an anterior and posterior recess11,12—and serves
as an insertion point for the cruciate ligaments and menisci.12,13 The ACL is oriented
obliquely, originating from the posteromedial side of the lateral femoral condyle, and
inserting into a broad oval- or triangular-shaped region in the medial portion of the
anterior recess.12–15 The anterior fibers of the ACL flatten out anteriorly and blend with
he insertional fibers of the anterior horn of the medial meniscus, whereas the
osterior ACL fibers insert into the base of the medial spine and blend with anterior

nsertion of the anterior horn of the lateral meniscus.13,14,16

MECHANISM

In the pediatric population, tibial eminence fractures are most likely to occur while
children are participating in various sports, eg, falling from a bike and skiing.17–19 The
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mechanism of injury is similar to intrasubstance ACL tears—hyperextension of the
knee with a valgus or rotational force.3,20–23 In a biomechanical study on primates,

oyes and colleagues1 found that eminence fractures are more likely to occur at
lower loading rates compared with intrasubstance ACL tears. In children, the
eakness of their incompletely ossified tibial plateau relative to the ACL results in an
vulsion fracture as tensile load is applied.3,23 Before bone failure, an in situ stretch

injury of the ACL may occur1 and may result in clinical laxity despite adequate
reduction of the fracture fragment.24–26

CLASSIFICATION

ACL avulsion fractures may vary considerably in the size of fragment, depth of the
fracture into the tibial plateau, degree of displacement, and amount of comminution.27

These injuries may also result in complete or incomplete ACL avulsions, with the
majority of incomplete avulsions involving the anteromedial bundle.27 The most
commonly used classification system is based on 4 fracture patterns that vary in
degrees of displacement and comminution (Fig. 1). Meyers and McKeever28 defined
types I to III. A type I fracture is the least severe, with a nondisplaced or minimally
displaced anterior margin and excellent bony apposition. In a type II fracture, the anterior
1/3 to 1/2 of the fragment is displaced, with an intact posterior hinge. Type III fractures
are classified in 2 subcategories. Type IIIA avulsion fractures have complete separa-
tion of the fragment from the bony bed without apposition, and type IIIB fractures are
completely displaced and rotated cephalad. Zaricznyi29 described type IV fractures,
which represent comminution of the fragment.

DIAGNOSIS

A patient with a tibial eminence fracture typically presents with a painful knee
hemarthrosis, decreased range of motion, and difficulty bearing weight.24 Physical
examination should include a complete neurologic and vascular examination of the

Fig. 1. Classification system of tibial eminence fractures. Type I, nondisplaced or minimally
displaced anterior margin; type II, the anterior 1/3 to 1/2 of the fragment is displaced; type
IIIA, complete displacement of the fragment; type IIIB, complete displacement and cephalad
rotation of the fragment; type IV, comminution of the fragment. (Courtesy of Delilah Cohn,

FA, CMI, Nashville, TN.)
lower extremity, as well as a thorough musculoskeletal examination of the knee.
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Several studies have shown an association between eminence fractures and injury
to the collateral ligaments, menisci, and articular cartilage.30 –32 Surgeons should

e cognizant of these associated injures and treat them appropriately when
ncountered.
Radiographic evaluation should include anteroposterior (AP) and lateral radio-

raphs of the knee, the latter of which is particularly useful in determining the degree
f displacement of the fracture fragment. Although radiographs are used to make the
iagnosis, in skeletally immature patients the fracture fragments may be considerably

arger than how they appear on radiograph, because a significant part of the fragment
ay be cartilaginous.23 Computed tomographic scanning allows improved visualiza-

tion of the fracture fragment compared with radiographs and provides a more precise
assessment of the fracture and presence of comminution.27 Magnetic resonance
imaging (MRI) can be helpful in preoperative planning by identifying concomitant
injuries of the knee and the position of the fragment relative to the soft tissue
structures that may impede reduction.19,33,34 MRI is also useful in determining if
interstitial injury of the ACL is present.19

TREATMENT

Tibial eminence fractures vary significantly in regards to fracture type, associated
intraarticular injury, entrapment of soft tissue within the fracture site, and extension of
fracture into the tibial plateau.18,23,27,35 Treatment is based on these characteristics
and tailored to each fracture pattern. Displaced tibial eminence fractures disrupt the
continuity of the femur-ACL-tibial viscoelastic chain and can cause mechanical block
to knee extension. The goals of treatment, therefore, are to restore continuity of the
ACL and its stabilizing function, eliminate the mechanical block caused by the
fragments, and restore congruity of the tibial plateau.27,35–37

TYPE I FRACTURE

The general consensus among researchers is that type I fractures can be treated
nonoperatively with long-leg cast immobilization.6,22,23,26,28,38–44 Aspiration of the
nee hemarthrosis may be performed before casting to decrease swelling and pain.
lthough there is agreement on treatment with immobilization among researchers,
pinions on knee position during treatment vary. McLennan45 demonstrated in
adavers and in vivo that greatest tension of the ACL occurred at 0° and 45° of flexion,
hereas the least tension was noted at 30° of flexion. Some researchers immobilize

he knees in “slight flexion,”23, 41 whereas others recommend immobilization at
pecific knee flexion angles. Meyers and McKeever46 and Willis and colleagues38

recommended placing the knee in 20° of flexion, Beaty and Kumar43 recommended
0° to 15° of flexion, and Fyfe and Jackson42 immobilized knees at 30° to 50° of

flexion.
Although most investigators treat type I fractures with immobilization in flexion,

others place the knee in full extension22,41 or hyperextension.26 However, placing the
knee in hyperextension may cause discomfort for the patient23 and can theoretically
increase the risk of compartment syndrome because of excessive tension on the
popliteal artery.3 Even so, Wilfinger and coworkers19 treated 14 skeletally immature
patients with type I fractures with aspiration and closed reduction in hyperextension
for 3 weeks, followed by conversion to a cast with 10° to 15° of knee flexion. In this
series, no compartment syndromes or complaints of discomfort were reported.

Healing occurs rapidly in skeletally immature patients, and most researchers have

treated type I fractures with 4 to 6 weeks of immobilization.6,19,22,38 Radiographs
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should be obtained immediately after casting to ensure maintenance of fracture
reduction and weekly or bimonthly thereafter. The duration of immobilization depends
on the patient’s age, signs of radiographic union, and the patient’s compliance and
motivation. To prevent the stiffness associated with immobilization of tibial spine
fractures, the shortest period of immobilization possible is recommended.23,35,40

TYPE II FRACTURE

The treatment of type II fractures is more controversial than that of type I fractures;
both operative and nonoperative treatments have been recommended. Nonoperative
treatment typically involves cast immobilization for 4 to 6 weeks, with or without
aspiration, and closed reduction of the knee in extension.19,41 Wiley and Baxter23

showed that the fracture line can extend into the tibial plateau, which supports the use
of closed reduction to allow the femoral condyles to hold the fragment reduced.
However, in a cadaveric study, McLennan45 showed that the footprint of the femoral
ondyle was not congruous with the fracture line at any point of flexion. Even so,
ome investigators have hypothesized that extension causes the fat pad to act as a
pace-occupying cushion that holds the fracture reduced regardless of its size.47

Meyers and McKeever,46 in contrast, warned that closed reduction may convert a
ype II fracture to a type III fracture. If closed reduction is attempted, fluoroscopy
hould be used to confirm adequate position of the fragment, and the patient should
e followed up closely to confirm maintenance of reduction in the cast. Kocher and
olleagues18 were only successful in closed reduction in 26 of 49 patients with type

I fractures. Of those fractures that were irreducible, 26% were found to have soft
issue entrapment within the fracture preventing reduction.18 Senekovic and Ve-
elko48 found intermeniscal ligament entrapment in 5 of 8 type II fractures. If an
cceptable fracture reduction cannot be achieved by closed manipulation or if
oncurrent intraarticular injuries are present, operative treatment is indicated.

TYPE III/IV FRACTURES

Closed reduction and immobilization can be attempted in type III or IV tibial spine
fractures (Fig. 2A). This technique is less successful in maintaining fracture reduction
because the fragment is completely displaced.39,41,45,49 The lower likelihood of
success with closed reduction may be due, in part, to the higher incidence of soft
tissue entrapment observed in this fracture pattern.18,48 Kocher and coworkers18

found 65% and Senekovic and Veselko48 found 100% of type III fractures had
intermeniscal ligament, anterior horn of medial meniscus, or anterior horn of the lateral
meniscus incarcerated within the fracture. However, Lowe and colleagues49 found no
tissue interposition in 12 type III fractures, but they observed that extension of the
knee caused displacement of the fracture fragment by pulling the anterior horn of the
lateral meniscus that inserted on the osteochondral fragment. Given the difficulties
associated with nonoperative management, most authors have recommended oper-
ative fixation for type III or IV fractures. Operative treatment regimens have included
open reduction with casting,39,41 open reduction with internal fixation (ORIF),6,23,38,39

arthroscopic reduction with casting,38,46 and arthroscopic reduction and internal
fixation (ARIF) with sutures,20,32,36,50–65 metal screws,22,25,31,48,66–68 bioabsorbable
ails,69 Kirschner wires,23,30,38,39 and, more recently, suture anchors.70–73

The best ARIF technique has not yet been determined because of the paucity of
comparative studies in the literature. In a cohort study, Seon and coworkers37

compared suture with screw fixation in type II and type III fractures and found no

difference in functional outcomes. Biomechanical studies to determine the fixation
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strength of various techniques have had mixed results.74–77 In a porcine model,
Eggers and colleagues75 demonstrated that FiberWire sutures (Arthrex, Naples, FL,

SA) were superior to Ethibond sutures (Ethicon, Norderstedt, Germany) and 1 or 2
ntegrade cannulated screws in both cyclic and single-cycle loading protocols. They
ound that the use of 2 cannulated screws weakens the bone fragment, resulting in
arlier failure.75 Bong and coworkers77 also found that FiberWire sutures were

significantly stronger than 1 cannulated screw in a single-cycle failure test. In a bovine
model, Mahar and colleagues74 found no difference between Ethibond suture,
bioabsorbable nails, a single bioabsorbable screw, or a single metal screw in an

Fig. 2. (A) This lateral radiograph demonstrates a type IIIB tibial spine fracture in a 12-year-
old male. (B) This arthroscopic view shows the type IIIB tibial spine fracture after the
entrapped intermeniscal ligament was retracted with a 2-0 Prolene suture.
ultimate failure test. In a cyclical loading test, Tsukada and coworkers76 found a
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statistically significant difference in displacement favoring an antegrade cannulated
screw over Ethibond sutures.

Comminuted fractures should be treated with suture fixation, because screws are
unlikely to provide adequate fixation.6,60 With screw fixation, the fracture fragment
hould be at least 3 times the size of the screw diameter60 to prevent disruption of the

fragment. However, a second surgery may be needed for hardware removal if the
screw head is prominent.78

SURGICAL TECHNIQUE

In the recent literature, ARIF, rather than open surgery, has become the standard of
care. A mini-arthrotomy for ORIF may still be necessary in fractures that are
irreducible by arthroscopic means.37 In skeletally immature patients, physeal sparing
echniques should be used to prevent growth disturbance.79 The following techniques
re based on our previous work.80

Setup

The operative extremity is placed in a circumferential leg holder with the hip flexed to
20° to allow lateral fluoroscopic imaging of the knee. A tourniquet is used to reduce
bleeding and improve visualization. The C-arm is placed on the opposite side of the
injured leg, and the tibial physis is visualized in the AP and lateral planes before the
limb is prepped and draped.

Fig. 3. With the knee flexed, a superomedial portal is established by first inserting an
18-gauge spinal needle at the level of the mid to upper patella at an angle that is as
perpendicular as possible to the tibial plateau. A portal is established at this location. After
the fracture fragment is reduced, a 1.25-mm threaded A-0 guide wire is inserted into the
fragment, the hole is drilled with C-arm visualization, and the appropriate 3.5-mm self-

tapping cannulated cancellous screw is inserted.



s
i
p
t
p
t

7Tibial Eminence Fractures
Screw Fixation

Standard anterolateral and anteromedial portals are created and the knee is lavaged
to remove the hemarthrosis. A systematic examination is performed and any meniscal
pathology should be treated at this time. A shaver is then used to resect the
ligamentum mucosum and enough of the infrapatellar fat pad to allow adequate
visualization. The fracture fragment is elevated, and residual blood clot and debris are
removed with a shaver or small curette (Fig. 2B). With the knee in 60° of flexion, a
uperomedial portal is established at the level of the mid to upper patella by first
nserting an 18-gauge spinal needle as perpendicular as possible relative to the tibial
lateau. Soft tissue incarcerated in the fracture crater can be retracted with a probe
hrough this portal. If the tissue cannot be retracted with the probe, a suture may be
laced through the anteromedial portal into the soft tissue and used to extract the soft
issue from the fracture. A probe or Freer elevator is used through the anteromedial

Fig. 4. (A) This arthroscopic view shows the fracture after fixation with 2 cannulated screws.

(B, C) The corresponding radiograph demonstrates reduction of the fragment.
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portal to reduce the fragment. A 1.25-mm thread-tip guide wire is inserted through the
superomedial portal under real-time fluoroscopy into the anterior medial half of the
fragment. The guide wire should be stopped before entering the tibial physis.
Carefully insert the guide wire as perpendicular to the fracture as possible. A second

Fig. 5. An ACL drill guide, inserted through the anteromedial portal, is used to insert two
2.4-mm drill-tip guide pins that enter the joint at the lateral and medial edges of the fracture
crater.

Fig. 6. A Spectrum suture passer is used to pass a 2-0 Prolene suture or shuttle relay through

the posterior fibers of the ACL.
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guide wire can be placed into the anterolateral half of the fragment to serve as
provisional fixation while the screw is being inserted. A cannulated measuring device
is placed over the guide wire, and a partially threaded, cannulated screw of
appropriate length is selected. The wire is then overdrilled with a 2.7-mm cannulated
drill bit under fluoroscopy, again avoiding the physis. The self-tapping 3.5-mm screw
is then inserted. A second screw can be placed over the provisional guide wire if the
fragment is large enough (Fig. 3). The knee is extended to determine if the screw head
impinges on the femur (Fig. 4A, B, C). A small notchplasty may be performed if
necessary to prevent impingement.

Suture Fixation

The initial preparation for arthroscopic suture fixation is similar to that for screw
fixation. The fracture is reduced, and a thread-tip, 1.25-mm guide wire is inserted into
the anterior central portion of the fragment for provisional fixation. For Tanner stage
I, II, or III patients, the physis may be avoided by using a transepiphyseal rather than
a transphyseal technique. Using C-arm visualization, an ACL drill guide is introduced
through the anteromedial portal. Determine the entrance site of the pins on the
anteromedial aspect of the tibia epiphysis by advancing the drill sleeve to the skin. A
2-cm to 3-cm incision is made in this location and the periosteum is elevated. The
ACL drill guide and a 2.4-mm drill-tip guide wire are used to make 2 parallel tunnels
1 cm apart that enter at the medial and lateral edges of the fracture crater on either
side of the ACL insertion (Fig. 5). The drill guide is removed, and a Spectrum suture
passer (Conmed Linvatec, Largo, FL, USA) with a 90° tip is used to pass a 2-0 Prolene
suture through the posterior fibers of the ACL as close to the bony fragment as
possible (Fig. 6). Both ends of the suture are then retrieved with a grasper through a
-mm cannula in the anteromedial portal. The suture is used to shuttle a #2 FiberWire

Arthrex) through the ACL (Fig. 7).
Fig. 7. A #2 FiberWire is shuttled through the ACL and pulled out the medial portal.
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The lateral pin is removed first and replaced with an 18-gauge spinal needle. A
CHIA suture passer (Depuy Mitek, Raynham, MA, USA) is inserted through the spinal
needle into the knee and retrieved through the cannula in the medial portal. The
medial limb of the FiberWire suture is loaded on the CHIA passer and pulled through
the lateral drill hole (Fig. 8). The lateral limb of the FiberWire suture is passed through
the medial drill hole in a similar manner, creating a loop around the anterior portion
of the ACL (Fig. 9). A second #2 FiberWire is passed through the base of the ACL
more anterior than the first. The limbs are passed in the same manner as before, and
the sutures are tied independently over the 1-cm bone bridge on the anteromedial
tibial epiphysis (Fig. 10).

Postoperative Regimen

Place the patient in a long-leg, hinged-knee brace that is locked in extension.
Encourage the patient to do quadriceps muscle contractions and straight leg
raises. The day after the surgery, initiate range-of-motion exercises (ROM) and
hamstring stretching in the prone position. Toe-touch weight-bearing with
crutches is allowed. Progression to full weight-bearing can begin 6 weeks after
surgery. Active ROM exercises, including terminal extension, and patella mobili-
zation can also begin 6 weeks after surgery. Exercises are introduced in levels of
increasing difficulty. Patients can resume participating in sports within 4 to 6

Fig. 8. The lateral guide pin is removed first and an 18-gauge spinal needle is placed in the
drill hole. A CHIA suture passer is inserted through the spinal needle and is pulled out
through the medial portal. The FiberWire suture limb on the medial side of the ACL is
then loaded on the CHIA suture passer and pulled out through the lateral tibial drill
hole.
months of surgery.
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DISCUSSION

Despite generally good results, complications of both operative and nonoperative
treatments may occur in children with tibial spine fractures, including residual laxity,
loss of motion, nonunion, and growth deformity.

Residual laxity is one of the most common complications and has been reported
with both operative24,25 and nonoperative19,39,40 treatment of all fracture patterns.

nterior laxity may be due, in part, to interstitial elongation of the ACL at the time
f injury1 and/or soft tissue interposition that impedes fracture reduction.18 Despite

the presence of objective residual laxity, many researchers found that most patients
have no complaints of instability.23,24,38,40 Residual laxity may be asymptomatic
because preservation of proprioceptive feedback allows normal neuromuscular
control of the knee.22 However, other studies report that increased laxity associated

ith interstitial elongation results in worse outcomes.26,45 McLennan45 reviewed a
eries of type III fractures treated with closed reduction and immobilization (CRI),
rthroscopic reduction and immobilization (ARI), and ARIF. He reported that Interna-
ional Knee Documentation Committee (IKDC), Lysholm, and Tegner scores were
ighest in those undergoing ARIF and lowest in the CRI group.45 Anterior laxity was

owest in ARIF and highest in CRI. Second-look arthroscopy revealed fracture
isplacement in CRI and ARI groups, and 6 of 7 patients treated with immobilization
ad retropatellar chondromalacia.45 Although most authors recommend an anatomic
eduction,17,18,24,48 others recommend countersinking the fragment to account for

interstitial injury and minimize residual laxity.25,72

Loss of motion, a common problem after treatment of tibial spine fractures, may be

Fig. 9. The medial drill-tip guide pin is then removed and, using the same technique, the
lateral FiberWire suture limb is passed out through the medial hole creating a loop around
the ACL and the fracture fragments.
caused by arthrofibrosis or malunion of the fracture. Arthrofibrosis has been attributed
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to prolonged postoperative immobilization.23,35,40,81 The use of rigid internal fixation
may allow more aggressive rehabilitation in an attempt to minimize stiffness.81

Fracture malunion may occur as a result of incomplete reduction during nonoperative
treatment45 or malreduction during operative treatment of displaced fractures.68

Femoral notchplasty has been used to regain extension in cases of malunion.82,83

Nonunion, although uncommon, has been associated with nonoperative treatment
of displaced fractures.55,56 Zhao and Huangfu55 presented a series of nonunions of
type II and III fractures that were treated with removal of the fibrous tissue and ARIF
using sutures. This treatment restored normal laxity in 10 of 11 patients. The IKDC
scores in these patients improved from abnormal or severely abnormal to normal or
nearly normal.55

Iatrogenic growth disturbance, an uncommon complication after fixation of tibial
spine fractures, may cause significant impairment. Mylle and colleagues79 presented

case report of an 11-year-old girl treated with a transphyseal screw for a displaced
ibial eminence fracture. Hardware was left in place for 2 years postoperatively. The
atient had premature closure of the anterior half of the growth plate, resulting in 25°
yperextension, 30° loss of flexion, and instability during sports.78 Ahn and Yoo56

reported a series of displaced fractures treated with absorbable suture fixation
through the tibial physis, with 2 cases of growth deformity. Given the potential severity
of iatrogenic growth disturbance, physeal sparing techniques are recommended to fix
tibial eminence fractures in skeletally immature patients.56,63,79
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